

Pd-Ag-In-Au계 금속 세라믹 합금의 모의소성에 따른 경도 및 미세구조의 변화

표애리, 신혜정, 조수연, 권용훈, 김형일, 설효정

부산대학교 치의학전문대학원 치과재료학교실

(Abstract)

Change in Hardness and Microstructure During Porcelain Firing Simulation in a Pd-Ag-In-Au Metal-Ceramic Alloy

Ae-Ri Pyo, Hye-Jung Shin, Su-Yoen Cho, Yong-Hoon Kwon, Hyung-II Kim, Hyo-Joung Seol*

Department of Dental materials, School of Dentistry, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan-Si, Gyeongsangnam-Do, 626-814, South Korea

Change in hardness and microstructure during porcelain firing simulation in a Pd-Ag-In-Au metal-ceramic alloy was examined by observing the change in hardness, crystal structure and microstructure. In the as-cast specimen, the matrix was composed of the Pd_3Ga phase(f.c.t.), and the particle-like structures were composed of the Pd-Ag-based phase(f.c.c.). The precipitates which covered the particle-like structures were composed of the Pd_3In phase(f.c.t.). Specimen which was cooled by ice quenching after oxidation was softened due to homogenization of the microstructure, and then it was hardened due to precipitates in the particle-like structures. The decrease in hardness by subsequent firing schedule was resulted from reduction of precipitates in the particle-like structures.

Key words: Pd-Ag-In-Au alloy, firing simulation, precipitation hardening, cooling rate, microstructure

I. INTRODUCTION

포세린과 세라믹 재료들은 1800년 초부터 심미적 보철재료 로 많이 사용되어져왔다. 포세린은 심미적인 측면에서는 우 수하지만, 높은 취성을 가지고 있다. 1950년 중반에 포세린을 금속에 융착시키는데 성공하며 금속세라믹 수복물의 재료와 기술이 급격히 향상되었다(Roberts 등, 2009). 우수한 세라믹 보철물은 금속하부구조의 물리적 성질에 많이 의존된다. 특 히 도재용 합금은 크라운용 계속가공의치보다 도재 축성 공간 을 남기는 설계가 필요하여 금속구조물이 가능한 얇게 형성되 므로 보다 높은 금속의 강도와 융점을 가져야한다(Yamamoto, 1987; Cho 등, 2011). 또한 열적안정성과 적절한 산화막 형성, sag 저항성이 부가적으로 요구된다(Roberts 등, 2009).

초기에 개발된 Au-Pd-Ag계 합금은 금속세라믹 금관용 합 금으로 적합한 기계적 성질과 화학적 성질을 나타내었다 (Payan 등, 1986; Ringle 등, 1989). 그러나 근래의 금값의 인상으로 가격이 저렴할 뿐만 아니라 고온의 세라믹소성처리 (firing heat-treatment)후에도 뛰어난 결합력과 변색저항성, 우수한 기계적 성질, 생체적합성 및 심미성 등을 갖는 새로운 대체용 치과재료 개발이 요구되었다. 이러한 변화로 1974년 금이 함유되지 않은 Pd-Ag계 합금이 개발되었다. Pd-Ag계 합금은 약 60 %의 Pd를 함유하고 있으며, Ag(28-40 %)와 미 량의 원소들로 균형을 맞추었다. Pd-Ag계 합금은 높은 탄성 계수로 인해 sag 저항성이 크다. 그러나 일부 Pd-Ag계 합금은 Au-Pd-Ag계 합금에 비해 포세린을 더 변색시킨다고 보고되었

^{*} Correspondence: 설효정 (ORCID ID: 0000-0002-6177-2616) (50612) 경상남도 양산시 물금읍 부산대학로 49 부산대학교 치의 학전문대학원 치과재료학교실 Tel: +82-51-510-8229, Fax: +82-51-510-8228 E-mail: seol222@pusan.ac.kr

Received: May. 26, 2016; Revised: Jun. 16, 2016; Accepted: Jun. 16, 2016

^{*} 이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

다. Pd-Ag-Au계 합금은 Pd-Ag계 합금에 비해 우수한 고온강 도를 가지며, 표면에 밝은 산화막을 형성한다(Roberts 등, 2009).

본 실험에 사용된 합금은 Pd-Ag-In-Au계로써 Au의 함량은 현저히 낮으며, 미량 원소인 Ga가 2.5 wt.% 정도 포함되어 있다. In과 Ga는 합금의 융점을 낮추고 유동성을 향상 시키 며, 산화막을 형성하여 도재와 화학적 결합을 시키는 것으로 알려져 있다(김 등, 2011). 그러나 Ga가 첨가된 Pd-Ag-In-Au 계 금속-세라믹 합금에서 소성에 따른 경도 및 미세구조의 변화는 자세히 밝혀져 있지 않다. 본 실험에서는 Pd-Ag-In-Au계 금속-세라믹 합금을 사용하여 모의소성에 따른 경도변 화를 조사하고, 그에 따른 미세구조, 결정구조, 원소분포 등을 분석하여 모의소성에 따른 Pd-Ag-In-Au계 합금의 경도 및 미 세구조의 변화를 밝히고자 한다.

II. MATERIALS AND METHODS

1. 실험합금

본 실험에서 사용되는 합금은 Pd-Ag-In-Au계 금속-세라믹

Table 1	Chemical	composition	of the	specimen	allov
	Onterneur	composition		opeenter	- cui O y

용 합금(Aurolite 61+3, Aurium research, USA)으로 Au가 포 함된 백색의 합금이다. 합금의 제조사에 따르면, 합금의 융해 온도범위는 1110-1280 ℃이고, 주조온도는 1440℃이다. 합금 의 조성은 Table 1과 같다.

2. 열처리

주조한 시편을 Table 2의 스케줄로 모의소성을 진행하였 다. 산화처리 후 냉각과정에서 최고의 경화 효과를 나타내는 냉각속도를 얻기 위해 주조한 시편을 산화처리 후 다양한 냉 각속도로 냉각하였다(Table 3). 주조된 시편을 산화처리 후 실험결과 얻어진 냉각 속도와 급냉의 두 가지 냉각속도로 냉 각하고, 이 후 최종 모의 소성 단계인 글레이즈 단계까지 진행 하여 경도 변화를 관찰하였다. 이때 냉각속도는 최고의 경화 효과를 나타낸 냉각속도로 통일하였다.

3. 경도시험

포세린 소성로에서 열처리된 각각의 시편에 대해 미소경도 계(MVK-H1, Akashi Co., japan)를 사용하여 Vickers 경도를 측정하였다. 측정 조건은 300 gf, 부하시간 10초이고, 한 시편 에 대하여 5개의 압흔을 측정한 후 평균을 구하여 경도 값으

Composition	Pd	Ag	Au	In	Ga	Ru
wt.%	61.00	23.40	3.00	10.00	2.50	0.10
at.%	61.68	23.34	1.64	9.37	3.86	0.11

Table 2. Simulated porcelain firing cycles

Firing cycles	Pre- drying (min)	Heat rate (°c/min)	Start temp. (℃)	Final temp. (℃)	Hold time (min)	Vaccum time (min)	Vaccum level
Oxidation	0	70	650	1010	5	0	0
Wash	2	70	550	980	1	7:09	50
Opaque	3	70	550	970	1	7:00	50
Main bake	5	70	550	960	1	6:51	50
Correction	4	70	550	950	1	6:43	50
Glaze	1	70	550	910	1	0	0

Cooling rate	Ice quenching	Stage 0	Stage 1	Stage 2	Stage 3	
Condition	Cooled by rapid quenching into ice brine	Firing chamber moves immediately to upper end position	Firing chamber opens about 70mm	Firing chamber opens about 50mm	Firing chamber remains closed	

Table 3. Cooling rate during simulated porcelain firing cycles

로 하였다.

4. 전계방출 주사전자현미경 관찰(Field emission scanning electron microscope observation, FE-SEM)

전계방출 주사전자현미경 관찰을 위해 주조한 시편과 모의 소성한 시편의 표면을 미세연마기를 사용하여 차례로 연마하 였다. 경면으로 연마된 시편을 10 % KCN + 10 % (NH)₄S₂O₈ 으로 된 신선한 부식액으로 표면을 부식시켰다.

열처리에 따른 조직의 변화를 조사하기 위해 표면을 부식 시킨 판상의 시편을 전계방출 주사전자현미경(JSM-6700F, Jeol, Japan)을 사용하여 가속전압 15 kV의 조건으로 관찰하 였다.

5. X선 회절 분석(X-ray diffraction, XRD analysis)

주조한 시편과 모의 소성한 시편의 표면을 X선 회절 장치 (XPERT-PRO, Philips, Netherlands)를 사용하여 X선 회절 실 험을 시행하였다. 측정 조건은 관전압 40 kV, 관전류 30 mA, 주사속도 1°(20/min)이고, Ni필터를 통과한 Cu Ka선을 사용하였다.

6. 에너지분산형 X선 분광 분석(Energy dispersive spectrometer, EDS analysis)

열처리에 따른 성분의 변화를 분석하기 위해 전계방출 주사 전자현미경 관찰에 사용한 시편을 그대로 사용하여 에너지 분 산형 X선 분광기(INCA x-sight, Oxford Instruments Ltd., UK) 를 사용하여 가속전압 15 kV의 조건에서 시편을 분석하였다.

III. RESULTS AND DISCUSSION

1. 냉각속도에 따른 경도변화

산화처리 후 냉각과정에서의 경도변화를 알아보기 위해 냉 각속도를 5단계로 조절하여 냉각하고 경도를 측정하였다. 냉 각속도는 빠른 순으로 급냉(ice-quenching), 0단계(포세린 소 성로가 완전히 열림), 1단계(포세린 소성로가 70 mm 열림), 2단계(포세린 소성로가 50 mm 열립), 3단계(포세린 소성로가 닫힌 상태)로 구분하였다. 주조한 시편[294.52 Hv (±13.76)] 을 포세린 소성로에 넣고 소성단계 중 제일 초기 단계인 산화 처리를 하여 각각의 냉각속도로 650 ℃까지 냉각시켰다. 그리 고 실온까지 bench cooling하여 경도를 측정하였다. 그 결과 는 Table 4에 나타내었다. 각 단계 중 급냉 단계(ice-quenching) 에서 가장 낮은 경도값이 얻어졌으며, 주조시의 경도값보다 125 Hv 감소하였다. 이러한 결과로부터 1010 ℃에서 5분간의 산화처리과정 동안에는 합금이 충분히 연화되는 것을 알 수 있었다. 그 외의 냉각속도에서는 경도값이 급냉 단계에 비해 100 Hv이상 상승하여 냉각과정 동안 합금의 경화가 일어나는 것을 알 수 있었다. 그중 냉각 속도가 stage 0일 때 가장 높은 경도값을 나타내었고 가장 느린 냉각속도인 stage 3에서 가장 낮은 경도값을 나타내었다. 이러한 결과로부터 산화처리 후 냉각과정에서 합금의 경도상승과 관련된 석출 또는 규칙화로 인한 상전이가 일어나는 것으로 생각되었다(Hirabayashi 등, 1962; Ohta 등, 1983; Seol 등, 2002; Jeon 등, 2013). 또한 이러한 상전이의 효율은 냉각속도에 크게 영향을 받음을 알 수 있었다.

Table 4. Hardness change by various cooling rate during oxidation

Figure 1. Hardness changes of specimens during porcelain firing simulation.

2. 모의소성에 따른 경도변화

최고의 경도값을 나타내었던 냉각속도(stage 0)로 합금에 도재를 용착시키지 않은 상태에서 Table 2의 소성단계에 따라 모의소성을 시행하여 경도변화를 측정하였다. Figure 1은 주 조된 시편을 모의소성하는 동안의 경도변화를 나타낸 것이다. 주조된 시편[294.52 Hv (±13.76)]은 소성단계를 거칠수록 경 도가 하강하였지만, 경도의 하강폭은 크지 않았다. 조성이 42.9Pd-46.0Ag-2.0Au-8.0In-1.0Sn-0.1Ir (wt.%)인 금속도재 용 합금의 모의 소성 후 경도변화에 관한 보고에서도 주조한 상태의 합금을 모의소성 한 결과 경도가 더 낮아지는 것이 보고되었다(Jeon 등, 2013).

3. 미세조직의 변화

실험합금의 모의소성에 따른 경도변화와 관련된 미세조직 의 변화를 조사하기 위해 전계방출 주사전자현미경관찰을 시 행하였다. Figure 2는 주조된 시편(a)과 산화처리 후 급냉한 시편(b), 산화처리 후 stage 0단계로 냉각시킨 시편(c)와 이를 글레이즈단계까지 처리한 시편(d)의 500배(1), 4000배(2), 60,000배(3)의 전계방출 주사전자현미경 사진이다. 주조된 시 편(a)에서는 기지와 다양한 형태의 입자형 구조가 관찰되었다 고, 침상의 석출물이 입자 전체를 덮고 있는 것이 관찰되었다 (a-3). 따라서 주조된 시편은 2상 이상으로 이루어진 것을 알 수 있었다. 주조한 시편을 산화처리 후 급냉한 시편(b) 또한 기지와 다양한 형태의 입자형 구조가 관찰되었다. 그러나 입 자 전체를 덮고 있던 침상의 석출물은 입자형구조의 내부로 고용된 것을 확인할 수 있었다. 이러한 결과로부터 산화처리 후 급냉으로 인한 합금의 연화는 석출물이 입자형구조 내부로

Figure 2. FE-SEM images of \times 500 (1), \times 4000 (2), \times 60,000 (3) for the specimens during firing simulation. (a): as-cast, (b): ice-quenched after oxidation, (c): cooled at stage 0 after oxidation, (d): complete firing of (c)

고용된 것에 기인하였다. 주조한 시편을 산화처리 후 냉각속 도 0단계로 냉각한 시편(c)에서도 기지와 다양한 형태의 입자 형 구조가 나타났으나, 입자형구조가 다시 침상의 석출물로 덮여있는 것이 관찰되었다. 이러한 결과로부터 산화처리 후 냉각과정에서 일어나는 합금의 경화는 입자형구조 내부로 고 용된 원소들이 다시 석출된 것에 기인하였다. 글레이즈까지 처리된 시편(d)에서는 시편(c)에 비해 입자형구조를 덮고 있 는 침상석출물이 줄어든 것이 관찰되었다. 이러한 결과로부 터 소성과정에 따른 경도 하강의 원인은 생성된 석출물이 입 자형구조 내부로 고용되는 고온 환경이 반복적으로 주어지고, 소성온도는 소성단계에 따라 점차 낮아짐으로 인해 냉각과정 동안에 다시 석출되는 석출물의 양이 줄어든 것에 기인하는 것으로 생각되었다. 입내 석출에 의해 합금이 경화되는 기작 은 다양한 치과용 귀금속 합금에서 보고되어져 왔다 (Vermilyea 등, 1996; Seol 등, 2009; Seol 등, 2011; Lim 등, 2012; Kim 등, 2014; Jeon 등, 2014; Kim 등, 2015, Shin 등, 2015).

4. 결정구조의 변화

모의소성에 따른 결정구조의 변화를 알아보기 위하여 X선 회절 실험을 시행하였다. Figure 3에서 (a)는 주조한 시편이 며, (b)는 산화처리 후 급냉한 시편, (c)는 산화처리 후 stage 0의 속도로 냉각한 시편, (d)는 산화처리 후 stage 0의 속도로 냉각하여 모의 소성을 끝낸 시편이다. 주조된 시편(as-cast)에 서는 격자상수 a₂₀₀=3.96 Å인 면심입방(face-centered cubic, f.c.c) 구조의 α₁상과 격자상수 a₂₀₀=4.15 Å, c₀₀₂=3.53 Å의 면심정방(face-centered tetragonal, f.c.t.) 구조의 β상, 그리 고 Figure 3에서 으로 표시한 격자상수 a₂₀₀=3.99 Å, c₁₁₁=3.83 Å인 면심정방(face-centered tetragonal, f.c.t.) 구 조의 α2상으로 이루어져 있었다. 각 상의 회절피크의 강도로 부터, 가장 높은 강도를 나타낸 α/상은 미세구조 중 가장 많은 부분을 차지하고 있는 입자형구조임을 알 수 있었다. 시편 (b)에서는 a2상의 회절피크가 사라진 것이 관찰되었으며, 이 는 미세조직의 변화에서 입자를 덮고 있던 침상의 석출물이 사라진 것과 상응하였다. 따라서 침상의 석출물은 a2상으로 이뤄진 것을 알 수 있었다.이러한 사실로부터 남아있는 β상은 기지에 해당함을 알 수 있었다. 산화처리 후 stage 0의 속도로 냉각한 시편(c)에서는 다시 a2상의 회절피크가 나타난 것으로 부터 산화처리 후 냉각과정 동안에 입자형구조를 이루고있는 면심입방구조의 a1상에서 면심정방구조의 a2상으로 이루어진 침상의 석출물이 형성된 것을 알 수 있었다. 이러한 침상석출 물에 해당하는 α2상의 회절피크는 소성을 끝낸 시편에서도 존재하는 것이 확인되었다. 이상으로부터 냉각과정에서의 경 도상승의 원인은 α1상과 α2상의 격자정수 차이로 인하여 두 상간의 경계에 격자변형이 형성된 것에 기인하였다(Tanaka

Figure 3. Changes in the XRD patterns of the specimens during firing simulation. (a): as-cast, (b): ice-quenched after oxidation, (c): cooled at stage 0 after oxidation, (d): complete firing of (c)

Figure 4. FE-SEM image of $\times 20,000$ for the ice-quenched specimen after oxidation. The part indicated by the arrow was measured by EDS analysis(M : matrix, P : particle).

등, 1998; Winn 등, 1999; Winn 등, 2000; Kawashima 등, 2000; Kim 등, 2001; Seol 등, 2002; Seol 등, 2005; Park 등, 2010; Cho 등, 2011).

5. 원소분포의 변화

Figure 4는 산화처리 후 급냉한 시편의 전계방출 주사전자 현미경 사진이다. 화살표 부분의 원소분석을 EDS로 측정하였 으며 그 결과는 Table 5에 나타내었다. Figure 4에서 시편의 기지(M)와 입자형구조(P)는 Pd가 주된 구성분으로 되어있었 다. 기지(M)는 입자형 구조(P)에 비해 Pd와 Ga의 함량이 높 았고 Ag의 함량은 낮았다. In의 함량은 기지(M)와 입자형구 조(P)에서 유사하였다. 이를 XRD 결과와 함께 고찰하면, 입 자형구조를 이루고 있는 α₁상은 In을 고용하고 있는 면심입 방구조의 Pd-Ag-based상(Cho 등, 2015)이라 생각되며, 기지 를 이루고 있는 β상은 Ag와 In을 고용한 면심정방구조의 Pd₃Ga상(Battaini, 2008)으로 생각되었다. 입자형구조를 덮고 있던 침상형 α_2 석출상은 구조가 미세하여 EDS로 분석할 수 없었으나, Pd₃In상이 격자정수가 a=4.0647 Å, c=3.7842 Å인 면심정방구조인 점(Harris 등, 1968)과 합금을 구성하는 성분 원소로 미루어보아 Ag를 고용한 면심정방구조의 Pd₃In상으 로 생각되었다.

IV. CONCLUSION

본 연구에서는 조성이 61Pd-23.4Ag-10In-3Au-2.5Ga-0.1Ru (wt.%)인 금속-세라믹용 합금을 모의소성 후 경도변화를 측 정하고, 이와 관련된 미세구조의 변화 및 결정구조 변화를 관 찰하여 다음과 같은 결론을 얻었다.

 주조된 시편에서 Ag와 In을 고용한 면심정방구조의 Pd₃Ga상이 기지를 이루고 있었으며, In을 고용한 면심 입방구조의 Pd-Ag-based상은 입자형구조를, Ag를 고용

Region (at.%)	Au	Pd	Ag	In	Ga	Ru
M1	0.90	68.48	10.50	8.47	11.65	0
M2	1.02	65.94	10.31	10.38	11.28	1.07
M3	1,11	67.11	10.79	9.38	11.60	0
P1	2.37	62.45	22.33	9.61	3.24	0
P2	2.09	62.65	22.41	10.04	2.83	0
P3	1.91	59.95	23.54	9.52	3.96	1.12

Table 5. EDS analysis at the regions marked in Figure 4

한 Pd3In상은 침상의 석출물을 이루고 있었다,

- 산화처리과정 동안 입자형구조를 덮고 있는 침상 석출물
 이 입자내로 고용됨으로써 합금이 연화되었다.
- 산화처리 후 냉각과정에서 일어나는 합금의 경화는 입자 형구조 내부로 고용된 원소들이 다시 석출된 것에 기인 하였다.
- 소성과정이 진행됨에 따라 생성되는 침상 석출물의 감소 로 경도가 하강하였다.

이상의 결과로부터 치과임상에서는 금속 도재용 합금을 소 성 후 냉각할 때 효과적인 경화능을 발휘하는 냉각 속도를 유지한다면 소성과정 중에서 일어날 수 있는 경도하강을 최대 한 억제할 수 있다고 생각되었다.

V. REFERENCES

- 김웅철 등 (2011). 치과도재기공학 I. 3판. 서울: (주)예낭아 이앤씨 pp. 171-176.
- Yamamoto M (1999). Metal-Ceramics 이론과 실제. 2판. 서 울: 지성출판사 p. 15.
- Battaini P (2008). Investment casting behavior of palladiumbased alloys. Proceedings of the twenty- second santa fe symposium, Albuquerque, New Mexico, U.S.A. p.8. Cho MH (2011). Hardness and microstructural changes by

cooling rate and holding time during porcelain firing of a multi-purpose dental gold alloy. *Kor J Dent Mater* 33:271-281.

- Cho SY, Cho MH (2014). Effect of complete firing cycle and rebake on the hardness and microstructure of a Pd-Ag-Au metal-ceramic alloy. *Kor J Dent Mater* 41:297-303.
- Harris IR, Norman M, Bryant AW (1968). A study of some palladium-indium, platinum-indium and platinum-tin alloys. J Less-common Matals 16:427-440.
- Kawashima I, Ohno H, Sarkar NK (2000). Effect of Pd or Au addition on age-hardening in AgMn-based alloys. Dent Mater 16:75-79.
- Kim HI, Kim YK, Jang MI, Hisatsune K, Sakrana AAELS (2001). Age-hardening reactions in a type III dental gold alloy. *Biomaterials* 22:1433-1438.
- Kim SM, Jeon BW, Yu YJ, Kwon YH, Kim HI, Seol HJ (2014). Precipitation hardening associated with post-firing heat treatment after simulation firing of an Au-Pt-Pd metal-ceramic alloy. *Kor J Dent Mater* 41:171-177.
- Kim SM, Yu YJ, Cho MH, Kwon YH, Kim HI, Seol HJ (2015). Hardening mechanism associated with post-firing heat treatment of softening heat treated and then firing simulated Pd-Ag-Au alloy for bonding

porcelain. Kor J Dent Mater 42:92-106.

- Lim IS, Kim YO, Pyo AR, Seol HJ, Kwon YH, Kim HI (2012). Precipitation harding of a dental Ag-Pd-Cu alloy during aging process. *Kor J Dent Mater* 39:17-26.
- Park JH, Cho MH, Park MG, Kwon YH, Kim HI, Seol HJ (2010). Age-hardening by grain interior and grain boundary precipitation in an Au-Ag-Pt-Zn-In alloy for multipurpose dental use. *Gold Bull* 43:316-323.
- Payan J, Moya GE, Meyer JM, Moya F (1986). Changes in physical and chemical properties of a dental palladium-silver alloy during metal-porcelain bonding. *J Oral Rehabil* 13:329-338.
- Ringle RD, Mackert JR Jr, Fairhurst CW (1989). Detecting silver-containing metal ceramic alloys that discolor porcelain, *Int J Prosthodont*, 2:563-568.
- Roberts HW, Berzins DW, Moore BK, Charlton DG (2009). Metal-ceramic alloys in dentistry: a review. J Prosthodont 18:188-194.
- Seol HJ, Cho MH, Park MG, Kwon YH, Kim HI (2009). Age-hardening mechanism in a dental casting Ag-Au-Pd-In-Zn alloy, *Kor J Dent Mater* 36:89-96.
- Seol HJ, Shiraishi Y, Tanaka E, Miura K, Hisatsune K, Kim HI (2002). Ordering behaviors and age-hardening in experimental AuCuZn pseudobinary alloys for dental applications. *Biomaterials* 23:4873-4879.

Seol HJ, Sim JS, Cho MH, Park MG, Kwon YH, Kim HI

(2011). The hardness and microstructural changes by the cooling rate in a PFM gold alloy during the porcelain firing cycles. *Kor J Dent Mater* 39:65-74.

- Seol HJ, Son HK, Yu CH, Kwon YH, Kim HI (2005). Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy. J Alloys Compd 402:130-135.
- Shin HJ, Yu YJ, Kwon YH, Kim HI, Seol HJ (2015). Effect of softening-heat treatment on hardness change of an Au-Pd-Zn-In-Sn metal-ceramic alloy during porcelain firing simulation. *Kor J Dent Mater* 42:345-352.
- Tanaka Y, Udoh K, Hisatsune K, Yasuda K (1998). Early stage of ordering in stoichiometric AuCu alloy. *Mater Trans JIM* 39:87-94.
- Vermilyea SG, Gai Z, Brantley WA, Mitchell JC (1996). Metallurgical structure and microhardness of four new palladium-based alloy. J Prosthodont 5:288-294.
- Winn H, Tanaka Y, Shiraishi T, Udoh K, Miura E, Hernandez RI, Takuma Y, Hisatsune K (2000). Coherent phase diagram of Au-Cu-Pd ternary system near and within the two-phase region of Au₃Cu and AuCu I orered phases. J Alloys Compd 306:262-269.
- Winn H, Udoh K, Tanaka Y, Hernadez RI, Takuma K, Hisatsune K. Phase transformations and age-hardening behaviors related to Au3Cu in Au-Cu-Pd alloys. *Dent Mater J* 18:218-234.