

금속 세라믹용 Pd-Ag-Sn-Au계 합금의 모의소성 시 산화처리 후 급랭에 의한 경화 효과

신혜정, 김민정, 권용훈, 김형일, 설효정^{*}

부산대학교 치의학전문대학원 치과재료학교실 및 BK21플러스 사업단

The hardening effect by ice-quenching after oxidation of a Pd-Ag-Sn-Au metal-ceramic alloy during porcelain firing simulation

Hye-Jeong Shin, Min-Jung Kim, Yong-Hoon Kwon, Hyung-Il Kim, Hyo-Joung Seol

Department of Dental materials and BK21 PLUS Project, School of Dentistry, Pusan National University, 49 Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, 50612, South Korea

The hardening effect by ice-quenching after oxidation of a Pd-Ag-Sn-Au metal-ceramic alloy during porcelain firing simulation was investigated by means of hardness test, field emission scanning electron microscopic observations, and X-ray diffraction analysis. The hardness decreased by ice-quenching after oxidation, which was induced by the homogenization of the ice-quenched specimen. The decreased hardness by ice-quenching after oxidation was recovered from the wash stage which was the first stage of the remaining firing process for bonding porcelain. After wash stage, the hardness of the ice-quenched specimens decreased during the subsequent porcelain firing process. But the final hardness of the ice-quenched specimens after oxidation was higher than that of the specimens cooled at stage 0 after oxidation. The increase in hardness of the specimens during the first firing process was caused by the lattice strains generated at the interface between the face-centered cubic Pd-Ag-rich matrix and the face-centered tetragonal Pd₃(Sn, Ga, In) precipitate. The decrease in hardness of the specimens during firing process was caused by the microstructural coarsening.

Key Words: Pd-Ag-Sn-Au metal-ceramic alloy, ice-quenching, porcelain firing simulation, precipitation hardening

서 론

심미 보철물에 속하는 금속 세라믹용 합금을 이용한 PFM (porcelain fused to metal) 보철물은 포세린의 단점인 취성을 보완하기 위해 금속하부구조물을 제작하여 그 상부에 포세린

* Correspondence: 설효정 (ORCID ID: 0000-0002-6177-2616) Department of Dental materials, Institute of Translational Dental Sciences, School of Dentistry, Pusan National University, 49 Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, 50612, South Korea

Tel: +82-51-510-8229, Fax: +82-51-510-8228 E-mail: seol222@pusan.ac.kr

Received: Jun. 20, 2017; Revised: Jul. 18, 2017; Accepted: Jul. 19, 2017

* 이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

을 축성 후 소성과정을 통해 결합시켜 제작되는 보철물이 다. 따라서, 포세린 축성 공간을 남기는 설계가 필요하며 포세 린 축성 공간을 감안해 금속하부구조물은 얇은 두께로 제작되 어야 하므로 높은 강도와 융점을 가져야한다(Yamamoto, 1987; Cho 등, 2011). 금속세라믹용 합금은 여러 가지 요건들 을 감안하여 선택되지만 기계적 성질면에서 볼 때 구강 내에 서 가해지는 교합압에 견딜 수 있고, 도재소성 시 변형이 없어 야 하며, 적합 조정이 용이한 것이 이상적이다. 또한, 열적 안정성과 적절한 산화막 형성, 처짐(sag) 저항성이 부가적으 로 요구된다(Roberts 등, 2009). 즉, 고온의 도재 소성로에서 여러 번의 반복되는 소성에 의해 포세란을 용착시키기 때문에 이러한 열처리에 대한 안정성과 열처리와 냉각의 반복과정에 서 발생할 수 있는 처짐에 대한 우수한 저항성, 그리고 포세린 과의 효과적인 화학적 결합을 위한 산화막 형성이 PFM 보철 물에 사용되는 금속하부구조물의 필수조건이다.

처짐 현상이란 합금을 고온에서 가열하더라도 급격하게 연 화되지는 않으나, 합금 자체의 무게에 의해 굴곡이 발생하는 것이다(김 등, 2011). 만약 고온에서의 반복 소성에 의해 금속 -세라믹용 합금의 기계적 성질이 저하된다면 금속 하부구조물 의 처짐 또는 변형(creep)이 발생하여 보철물의 적합도 저하 또는 보철물의 내구성에 악영향을 미칠 우려가 있다 (Bertolotti와 Moffa; 1980, Fischer 등, 1999). 따라서, 반복적 열처리 동안 합금의 기계적 성질이 저하되는 것을 최대한 방 지하는 것이 보철물의 내구성 향상에 바람직 할 것이다.

한편, 금속하부구조물로 사용되는 금속-세라믹용 합금은 고금합금에 비해 경제성이 우수한 대체합금 개발에 대한 요구 가 증가함에 따라, 저금합금 및 비귀금속 합금 재료들이 다양 하게 나타났다. 금(Au)의 주된 대체합금으로 사용되고 있는 Pd-Ag계 세라믹용 합금은 높은 탄성계수와 포세린과의 결합 강도, 우수한 조작성, 그리고, 변색과 부식에 대한 안정성도 가지고 있는 것으로 밝혀져 있다(Mezger 등, 1989; Bertolotti, 2002). 그러나, 이러한 Pd-Ag계 세라믹용 합금은 모의소성(금 속하부구조물 제작 후 포세린 분말을 축성하지 않고 포세린 분말 축성 후의 소성과정과 동일하게 소성과정을 진행) 중 반복적인 열처리로 인해 경도가 하강하는 것으로 보고되어 있다(Kim 등, 2016; Kim 등, 2016; Pyo 등, 2016). 이로 인해 기계적 성질이 저하되어 처짐 또는 변형이 발생할 수 있는 가능성이 높을 것으로 생각되었다. 이러한 경도하강의 문제 점을 해소하는 데는 소성 전 연화열처리, 소성 후 열처리 그리 고 소성과정에서 냉각속도를 조절하는 것이 유효하다는 보고 가 있다. Pd-Au-In-Ag계 금속-세라믹용 합금의 경우 소성 전

Table 1. Chemical composition of the specimen alloy

연화열처리가 소성에 따른 합금의 경도하강을 크게 억제하는
것으로 보고되어 있다(Jeon 등, 2014). 연화열처리 후 모의소
성 된 금속-세라믹용 Pd-Ag-Au계 합금의 경우 모의소성에 의
해 경도가 감소하였으나, 추가적인 후열처리에 의해 경도가
다시 회복된 것으로 보고되었다(Kim 등, 2015). 그리고
Pd-Au-Ag-Sn계 금속-세라믹용 합금의 경우 소성과정에서 냉
각속도를 달리함에 따라 소성에 따른 합금의 경도하강의 정도
를 조절할 수 있는 것으로 보고되어 있다(Kim 등, 2016). 본
실험에서는 Pd-Ag-Sn-Au계 합금에서 포세린 소성과정 동안
금속하부구조물의 경도가 하강하는 문제점을 개선하기 위해
모의소성 시 산화처리 단계에서 서냉(bench cooling) 대신
급랭(ice-quenching)으로 합금을 냉각시킴으로써 나머지 소
성단계 동안 경화효과를 얻을 수 있을 것으로 예측하고, 이를
확인하기 위해 실험을 진행하였다.

재료 및 방법

1. 실험합금 (Specimen alloy)

본 실험에서 사용되는 합금은 Pd-Ag-Sn-Au계 금속-세라믹 용 합금(Goldenian P10, Shinhung, Korea)으로 Extra Hard 타입의 백색 합금이다. 합금의 제조사에 따르면 합금의 융해 구간 온도는 1,293℃~ 1,328.0℃ 이다. 주조온도는 1,376~ 1,411℃이다. 합금의 조성은 Table 1과 같다.

2. 열처리 (Heat-treatment)

실험 합금을 1,380 ℃에서 주조하여 산화처리 후 최고의 경화 효과를 나타내는 냉각 속도를 확인하기 위해 Table 2의 다양한 냉각속도로 냉각시켰다. 주조 된 시편을 산화처리 후

Composition	Pd	Ag	Au	Sn	In	Ga
wt.%	56	22	10	7.5	3.5	1
at.%	59.2	22.94	5.71	7.11	3.43	1.61

Cooling rate	Ice-quenching	Stage 0	Stage 1	Stage 2	Stage 3
Condition	Quenching into ice brine	Firing chamber moves immediately to upper end position	Firing chamber opens about 70mm	Firing chamber about 50mm	Firing chamber remains closed

Table 2. Cooling rate during simulated porcelain firing cycles

Table 3. Simulated porcelain firing cycles

Firing cycles	Pre- drying (min)	Heat rate (° C/min)	Start temp. (°C)	Final temp. (°C)	Hold time (min)	Vaccum time (min)	Vaccum level (hpa)
Oxidation	0	70	600	1000	10	0	0
Wash	2	70	600	950	1	6:00	50
Opaque	2	70	600	930	1	5:43	50
Main bake	4	70	600	920	1	5:34	50
Correction	4	70	600	910	1	5:26	50
Glaze	0	70	600	900	0	4:17	0

최고의 경화효과를 나타내는 냉각속도로 통일하여 Table 3의 스케줄로 glaze 단계까지 포세린 소성로(Multimat 2 touch, Densply, Germany)를 사용하여 모의소성을 완료하였다.

3. 경도 시험 (Hardness test)

포세린 소성로에서 열처리 된 각 시편에 대해 미소경도계 (MVK-H1, Akashi Co., Japan)를 사용하여 Vickers 경도를 측 정하였다. 측정 조건은 300 gf 부하시간 10초이고, 한 시편에 대하여 5개의 압흔을 측정한 후 평균을 구하여 경도 값으로 하였다.

4. 전계방출 주사전자현미경 관찰 (Field emission scanning electron microscope observation)

포세린 소성로에서 열처리 된 각 시편에 대해 전계방출 주 사전자현미경 관찰을 시행하기 위하여 시편의 표면을 미세연 마기를 사용하여 차례로 연마하였다. 경면으로 연마된 시편 을 10% KCN + 10% (NH)₄S₂O₈으로 된 신선한 부식액으로 표면을 부식시켰다. 부식시킨 판상의 시편을 전계방출 주사 전자현미경(JSM-6700F, Jeol, Japan)을 사용하여 가속전압 15 kV의 조건으로 관찰하였다.

5. X선 회절 분석 (X-ray diffraction analysis)

포세린 소성로에서 열처리 된 각 시편에 대해 X선 회절 장치(XPERT-PRO, Philips, Netherlands)를 사용하여 X선 회 절 실험을 시행하였다. 측정 조건은 관전압 40 kV, 관전류 30 mA, 주사속도 1° (2θ/min)이고, Ni필터를 통과한 Cu Kα 선을 사용하였다.

6. 에너지 분산형 X선 분광 분석 (Energy dispersive spectrometer analysis)

시편의 성분을 분석하기 위해 전계방출 주사전자현미경 관 찰에 사용한 방법으로 시편을 처리하여 에너지 분산형 X선 분광기 (INCA x-sight, Oxford Instruments Ltd., UK)를 사용 하여 가속전압 15 kV의 조건에서 시편을 분석하였다.

결과 및 고찰

산화처리 후 급랭이 모의소성에 따른 경도에 미치는 영향

주조 된 시편의 경도는 234.1HV(±5.86)이였다. 주조된 시 편을 산화처리 후 Table 2의 다양한 냉각속도로 냉각하였다. 그 결과는 Figure 1에 나타내었다. 산화처리 후 급랭한 시편의 경도는 141.6HV(±5.36)으로 가장 낮았고, stage 0의 냉각속 도로 냉각한 시편의 경도는 264.9HV(±3.36)으로 시험된 다 른 냉각 속도보다 합금의 경화에 가장 효과적이였다. 따라서, 최고의 경화효과가 나타나는 냉각속도는 stage 0임이 확인되 었다. 따라서, 산화처리 이후의 모의소성 시 각 단계의 냉각속 도는 stage 0으로 모두 통일하였다.

Figure 2는 산화처리 후 stage 0으로 냉각한 시편과 산화처 리 후 급랭한 시편을 모의 소성하는 동안의 경도의 변화를 나타내었다. 주조된 시편을 산화처리 후 최고의 경화효과를 나타내는 stage 0으로 냉각한 시편은 주조 시의 경도보다 산 화처리 이후의 경도가 상승하였으나, wash 단계에서 주조 시 의 경도와 비슷한 수준으로 낮아졌으며, 계속해서 모의소성을 진행함에 따라 점차적으로 경도가 하강하였다. 한편, 주조한 시편을 산화처리 후 급랭한 시편의 경도는 주조한 시편의 경 도보다 크게 낮아졌으나, 이후 wash단계에서 주조된 시편의 경도와 비슷한 수준으로 회복되는 것이 확인되었다. 이후 소 성이 진행됨에 따라 점차 경도가 하강하였으나, 산화처리 후 급랭한 시편의 최종 경도가 산화처리 후 stage 0으로 냉각한 시편의 최종 경도보다 더 높게 나타났다. 이러한 결과로부터, 금속-세라믹용 Pd-Ag-Sn-Au계 합금의 모의소성 시 산화처리 후 급랭을 시행함에 따른 합금의 경화 효과가 확인되었다. 이와 같이 열처리 후 급랭을 도입하여 포세린 소성에 따른 합금의 연화를 억제하는 결과는 조성이 48.45Pd-22.23Ag-20.51Au-5.32Sn (at.%)인 금속-세라믹용 합금(Kim 등, 2016), 조성이 50.37Pd-30.61Au-9.92In-6.09Ag-2.28Ga (at.%)인 금 속-세라믹용 합금(Jeon 등, 2014)에서도 보고되었다.

산화처리 후 급랭이 모의소성에 따른 미세구조의 변화 에 미치는 영향

Figure 1. Change in hardness according to the cooling rates after oxidation.

Figure 2. Change in the hardness of the specimens during porcelain firing simulation.

산화처리 후 급랭이 모의소성에 따른 미세구조의 변화에 미치는 영향을 알아보기 위하여 전계방출 주사전자현미경 (Field emission scanning electron microscopy, FE-SEM) 관 찰을 시행하였다. Figure 3은 주조 후 산화처리 단계에서 냉각 속도를 급랭과 stage 0으로 조절하여 냉각시킨 두 시편의 모 의소성에 따른 미세구조 변화를 관찰한 결과이다. 주조한 시 편(a)에서는 입계 및 입내에 크고 작은 석출물이 관찰되었다. stage 0으로 냉각한 시편(b)에서는 주조된 시편(a)보다 입계 석출물의 굵기가 감소하였고, 기지에는 미세한 입자형 석출물 이 다량 생성되어 있었다. 이러한 미세한 입자형 석출물의 생성으로 인해 합금의 경도가 상승한 것으로 생각되었다. 시

Figure 4. XRD changes in the as-cast specimen during porcelain firing simulation[(a): ice-quenched after oxidation, (b): wash treated specimen of (a), (c): complete firing simulated specimen of (b), (d): cooled at stage 0 after oxidation and then complete firing simulated].

완료한 시편이다. 그리고, (d)는 산화처리 후 stage 0으로 냉 각한 시편을 glaze까지 최종 모의소성을 완료한 시편이다. 산 화처리 후 급랭한 시편(a)에서는 격자상수 a200=3.966 Å인 면 심입방(face-centered cubic, f.c.c) 구조의 α상이 확인되었 다. 이는 기지를 이루고 있는 것으로 생각되며, Figure 3(e)에 서 보여진 석출물에 의한 회절피크(β)는 2θ =44° 부근에서 약하게 관찰되었다. 이후 모의소성을 진행함에 따라 111α 피크가 111α' 피크와 111β 피크로 분리되는 것이 확인되었 으며(b, c), β상의 생성이 더 활발하게 진행되는 것을 알 수 있었다. 산화처리 후 stage 0으로 냉각하여 최종모의소성을 완료한 시편(d)에서도 동일한 상전이가 확인되었다. 시편(d) 에서 기지는 격자상수 ann=3.978 Å인 면심입방(face-centered cubic, f.c.c) 구조의 α' 상이며, 입계 및 입내 석출물은 격자 상수 a200=4.096 Å, c002=3.710 Å인 면심정방(face-centered tetragonal, f.c.t) 구조의 β상으로 이루어져 있었다. 이상으로 부터, 산화처리 후 급랭한 시편의 경도가 나머지 소성과정에 서 상승한 원인은 면심입방구조의 α상 기지에서 면심정방구

편(b)를 wash처리 한 후 stage 0으로 냉각시킨 시편(c)에서는 시편(b)에서보다 입계 및 입내의 석출물이 조대화 되는 경향 을 보였다. 시편(c)를 glaze까지 최종 모의소성을 완료한 시편 (d)에서는 입계 및 입내의 석출물의 크기가 시편(c)에서 보다 증가하여 조대화가 더 많이 진행된 것이 확인되었다.

주조한 시편을 산화처리 후 급랭한 시편(e)에서는 산화처 리 후 stage 0으로 냉각한 시편(b)보다 입계석출물의 굵기가 감소하였다. 시편(b)의 기지에서 나타난 미세한 입내 석출물 은 시편(e)에서는 명확하게 관찰되지 않았다. 따라서, 산화처 리 과정동안 입내 석출물이 기지 내로 고용되어 경도가 떨어 지는 것으로 나타났다. 시편(e)를 wash 처리 후 stage 0으로 냉각한 시편(f)에서는 입내에 석출물이 다시 생성되어 있었으 며, 입계의 석출물이 조대화 되어 시편(c)의 미세구조와 유사 한 양상을 보였다. 산화처리 후 급랭한 시편을 glaze까지 모의 소성을 완료한 시편(g)에서는 입계 및 입내 석출물의 조대화 가 시편(f)보다 더 많이 진행되어 있었다.

이상으로부터, 산화처리 후 급랭한 시편에 비해 stage 0으 로 냉각한 시편의 기지에 미세한 석출물이 더 많이 생성된 것이 확인되었다. 이로부터 산화처리 하는 동안 합금이 균질 화 되어 연화되었고, 산화처리 후 냉각하는 과정에서 합금이 석출경화됨을 알 수 있었다. 이러한 석출현상은 치과용 합금 의 대표적인 경화기전의 하나로 밝혀져 있다(Vermilyea 등, 1996; Seol, 등 2011; Kim 등, 2014; Kim 등, 2015). 한편, 이러한 석출물은 모의소성 과정을 거침에 따라 점점 조대화 되었는데(Lee 등, 2004; Seol 등, 2005; Kim 등, 2007; Seol 등, 2008; Park 등, 2008), 이러한 조대화는 석출물과 기지 사이 계면의 면적을 감소시켜 격자 뒤틀림을 완화하므로 경도 를 하강시키는 것으로 보고되어 있다(Otha 등, 1975; Jeon 등, 2008; Yu 등, 2008; Cho 등, 2011; Kim 등, 2016).

산화처리 후 급랭이 모의소성에 따른 결정구조의 변화에 미치는 영향

모의소성에 따른 결정구조의 변화를 알아보기 위하여 X선 회절 시험(X-ray diffraction analysis)을 시행하였고, 그 결과 를 Figure 4에 나타내었다. (a)는 산화처리 후 급랭한 시편, (b)는 산화처리 후 급랭한 시편을 wash 처리한 시편이며, (c) 는 산화처리 후 급랭한 시편을 glaze까지 최종 모의소성을 조의 β상의 활발한 석출로 인해 기지와 석출물간의 계면에 생성된 격자변형에 기인하였다.

산화처리 후 급랭이 모의소성에 따른 미세조직의 성분 변화에 미치는 영향

기지와 석출물의 원소분포를 알아보기 위하여 에너지 분산 형 X선 분광분석(Energy dispersive spectrometer analysis) 으로 성분분석을 시행하였다. Figure 5는 주조한 시편을 산화 처리 후 급랭하여 모의소성을 완료하고, 그에 따른 미세조직 의 성분 원소 분포의 변화를 관찰한 결과이다. Figure 5의

Figure 5. Microstructure after complete firing simulation of the ice-quenched specimen after oxidation (M : matrix, P : grain boundary precipitates, and PP : particle-like precipitates).

화살표 부분(M: 기지, P: 입계 석출물, PP: 입자형 석출물)의 성분을 분석하여 그 결과를 Table 4에 나타내었다. 석출물(P, PP)에서는 기지(M)에 비해 Pd와 Sn이 크게 증가하였고, Ag와 Au는 크게 감소하였다. 에너지 분산형 X-선 분광 분석결과와 X선 회절분석결과를 종합하여 판단하면, 기지는 Pd-Ag-rich 의 f.c.c 구조의 α상이며, 석출물은 Pd₃(Sn,Ga,In)이루어진 f.c.t. 구조의 β상이였다(Villars와 Calvert, 1985; Cho와 Cho, 2015).

결 론

본 연구에서는 Pd-Ag-Sn-Au계 금속세라믹용 합금의 모의 소성 시 산화처리 후 급랭에 의한 경화 효과를 관찰하여 다음 과 같은 결과를 얻었다.

- 산화처리 후 stage 0으로 냉각한 시편과 산화처리 후 급랭한 시편을 glaze까지 모의소성한 결과, 두 시편 모 두 소성 첫 단계에서 경도가 상승한 후 지속적으로 경도 가 하강하였으나, 산화처리 후 급랭한 시편의 최종 경도 가 더 높게 나타났다.
- 소성 첫 단계에서 일어난 경도의 상승은 면심입방구조의 Pd-Ag-rich 기지에서 면심정방구조의 Pd₃(Sn,Ga,In)상 의 석출로 인해 기지와 석출물간의 계면에 생성된 격자

Table 4.	EDS	analysis	after	complete	firing	simulation	of the	e ice-c	quenched	specimen	after	oxidation.
----------	-----	----------	-------	----------	--------	------------	--------	---------	----------	----------	-------	------------

Region (at.%)	Pd	Ag	Au	Sn	In	Ga
M 1	61.4	22.63	7.07	5.05	1.78	2.07
M 2	60.35	25.33	8.31	4.4	0	1.61
P 1	75.67	2.96	2	11.7	3.05	4.62
P 2	82.35	0	2.39	11.27	0	3.99
PP 1	74.30	4.2	2.24	12.13	3.52	3.61
PP 2	75.02	3.72	2.52	11.38	3.55	3.81

변형에 기인하였다.

오의소성과정에 따른 경도의 하강은 석출물이 조대화됨
에 따라 석출물과 기지사이의 계면의 면적이 감소되어
격자 뒤틀림이 해소된 것에 기인하였다.

참고문헌

- 김웅철 등 (2011). 치과도재기공학 I. 3판. 서울: (주)예낭아 이앤씨 pp. 295-296.
- Bertolotti RL (2002). Alloys for porcelain-fused-to-metal restorations. Dental materials and their selection, 3rd ed. Chicago: Quintessence Pub. co. pp. 200-209.
- Bertolotti RL, Moffa JP (1980). Creep rate of porcelainbonding alloys as a function of temperature. J Dent Res 59:2062-2065.
- Cho MH, Cho SY (2015). Precipitation hardening by holding after simulated complete firing in a Pd-Ag-Au-In-Sn metal-ceramic alloy. Kor J Dent Mater 42:165-172.
- Cho MH (2011). Hardness and microstructural changes by cooling rate and holding time during porcelain firing of a multi-purpose dental gold alloy. Kor J Dent Mater 33:271-281.
- Cho SY, Lee GY, Kwon YH, Kim HI, Seol HJ (2011). Age-hardening characteristic of a Cu-free Ag-Pd alloy containing high In. Kor J Dent Mater 38:91-100.
- Fischer J, Baltzer N, Fleetwood PW (1999). Thermal creep analysis of precious metal alloys for the ceramicfusedto-metal technique. J Biomed Mater Res 48:258-264.
- Jeon BW, Kim SM, Kim HI, Kwon YH, Seol HJ (2014). Hardening effect of pre- and post-firing heat treatment for a firing-simulated Au-Pd-In metal-ceramic alloy. Gold Bull 47:255-261.
- Jeon BW, Kwon YH, Kim HI, Seol HJ (2014). Changes in hardness and microstructure of a solution-treated Au-Pd-In alloy for porcelain bonding during porcelain firing simulation. Kor J Dent Mater 41:311-317.

- Jeon GH, Kwon YH, Seol HJ, Kim HI (2008). Hardening and overaging mechanisms in an Au- Ag-Cu-Pd alloy with in additions. Gold Bull 41:257-263.
- Kim BS, Park MK (2012). Phase transformation and microstructural changes of dental Au-Ag-Cu-Pd alloy containing small amounts of Zn and In. Kor J Dent Mater 39:261-268.
- Kim HI, Jeon GH, Yi SJ, Kwon YH, Seol HJ (2007). Harding and overaging mechanism of a commercial Au-Ag-Cu-Pd dental alloy. J Alloys and compd 441:124-130.
- Kim MJ, Shin HJ, Kwon YH, Kim HI, Seol HJ (2016). Effects of cooling rate on hardness change of a Pd-Au-Ag-Sn metal-ceramic alloy during porcelain firing simulation. Kor J Dent Mater 43:273-280.
- Kim SM, Jeon BW, Yu YJ, Kwon YH, Kim HI, Seol HJ (2014). Precipitation hardening associated with postfiring heat treatment after simulation firing of an Au-Pt-Pd metal-ceramic alloy. Kor J Dent Mater 41:171- 177.
- Kim SM, Shin HJ, Kwon YH, Kim HI, Seol HJ (2016). Effect of ice-quenching after degassing on the hardness change during simulated porcelain firing in a metalceramic Pd-Au-Ag alloy. Kor J Dent Mater 43:317-322.
- Kim SM, Yu YJ, Cho MH, Kwon YH, Kim HI, Seol HJ (2015). Hardening mechanism associated with postfiring heat treatment of softening heat treated and then firing simulated Pd-Ag-Au alloy for bonding porcelain. Kor J Dent Mater 42:92-106.
- Lee HK, Moon HM, Seol HJ, Lee JE, Kim HI (2004). Age hardening by dendrite growth in a low-gold dental casting alloy. Biomaterials 25:3869-3875.
- Lee JH, Kim MJ, Lee HK, Kim HI, Seol HJ (2004). Age-hardening characteristics of dental casting Ag-Pd-Zn-Sn-In alloy. Kor J Dent Mater 31:11-19.
- Mezger PR, Stols ALH, Vrijhoef MMA, Greener EH (1989). Metallurgical aspects of palladium-silver porcelain-silver porcelain-bonding alloys. J Dent 17:90-93.
- Ohta M, Hisatsune K, Yamane M (1975). Study on the

age-hardenable silver alloy (3rd Report) III on the ageing process of dental Ag-Pd-Cu-Au alloy. J Jpn Soc Dent Appar Mater 16:87-92.

- Park MG, Yu JH, Seol HJ, Kim HI (2008). Age-hardening behaviour of a spinodally decomposed low-carat gold alloy. J Mater Sci 43:1539-1545.
- Pyo AR, Shin HJ, Cho SY, Kwon YH, Kim HI, Seol HJ (2016). Change in hardness and microstructure during porcelain firing simulation in a Pd-Ag-In-Au metalceramic alloy. Kor J Dent Mater 43:167-176.
- Roberts HW, Berzins DW, Moore BK, Charlton DG (2009). Metal-ceramic alloys in dentistry: a review. J Prosthodont 18:188-194.
- Seol HJ, Noh DJ, Lee SH, Kwon YH, Kim HI (2008). Age-hardening by formation of metastable phase in an In-added Au-Ag-Cu-Pd alloy. Mater Charact 59: 1190-1195.
- Seol HJ, Sim JS, Cho MH, Park MG, Kwon, YH, Kim HI (2011). The hardness and microstructural changes by

the cooling rate in a PFM gold alloy during the porcelain firing cycles. Kor J Dent Mater 39: 65-74.

- Seol HJ, Son KH, Yu CH, Kown YH, Kim HI (2005). Precipitation of a Cu free Au-Ag-Pd-In dental alloy. J Alloy Compd 402:130-135.
- Vermilyea SG, Cai Z, Brantley WA, Mitchell JC (1996). Metallurgical structure and microhardness of four new palladium-based alloy. J Prosthodont 5:288-294.
- Villars P, Calvert LD (1985). Pearson' s Handbook of Crystallographic Data for Intermetallic Phase. 1st ed. Metals park: American society for metals. p. 3017.
- Yamamoto M (1985). Metal-ceramics : principle and methods of Makoto Yamamoto. 1st ed. Chicago: Quintessence Pub. co. pp. 15-22.
- Yu CH, Park MG, Kwon YH, Seol HJ, Kim HI (2008). Phase transformation and Microstructural changes during ageing process of an Ag-Pd-Cu-Au alloy. J Alloys Compd 460:331-336.

금속-세라믹용 Pd-Ag-Sn-Au계 합금의 모의소성 시 산화처리 후 급랭에 의한 경화 효과

신혜정, 김민정, 권용훈, 김형일, 설효정^{*}

부산대학교 치의학전문대학원 치과재료학교실 및 BK21 플러스 사업단

본 연구에서는 포세린 소성과정 동안 금속하부구조물의 경도가 하강하는 문제점을 개선하기 위해 모의소성 시 산화처 리 단계에서 서냉(bench cooling) 대신 급랭(ice-quenching)으로 합금을 냉각시킴으로써 나머지 소성단계 동안 경화효과 를 얻을 수 있을 것으로 예측하고, 이를 확인하기 위해 실험을 진행하였다. 본 연구에서는 Pd-Ag-Sn-Au계 금속-세라믹용 합금을 사용하여 실험을 진행하여 다음과 같은 결과를 얻었다. 산화처리 후 stage 0으로 냉각한 시편과 산화처리 후 급랭한 시편을 glaze까지 모의소성한 결과, 두 시편 모두 소성 첫 단계에서 경도가 상승한 후 지속적으로 경도가 하강하였 으나, 산화처리 후 급랭한 시편의 최종 경도가 더 높게 나타났다. 소성 첫 단계에서 일어난 경도의 상승은 면심입방구조의 Pd-Ag-rich 기지에서 면심정방구조의 Pd₂(Sn, Ga, In)상의 석출로 인해 기지와 석출물간의 계면에 생성된 격자변형에 기인하였다. 모의소성과정에 따른 경도의 하강은 석출물이 조대화됨에 따라 석출물과 기지사이의 계면의 면적이 감소되 어 격자 뒤틀림이 해소된 것에 기인하였다.

색인 단어 : Pd-Ag-Sn-Au 금속-세라믹 합금, 급랭, 모의소성, 석출경화